Data Augmentation by Pairing Samples for Images Classification

نویسنده

  • Hiroshi Inoue
چکیده

Data augmentation is a widely used technique in many machine learning tasks, such as image classification, to virtually enlarge the training dataset size and avoid overfitting. Traditional data augmentation techniques for image classification tasks create new samples from the original training data by, for example, flipping, distorting, adding a small amount of noise to, or cropping a patch from an original image. In this paper, we introduce a simple but surprisingly effective data augmentation technique for image classification tasks. With our technique, named SamplePairing, we synthesize a new sample from one image by overlaying another image randomly chosen from the training data (i.e., taking an average of two images for each pixel). By using two images randomly selected from the training set, we can generate N new samples from N training samples. This simple data augmentation technique significantly improved classification accuracy for all the tested datasets; for example, the top-1 error rate was reduced from 33.5% to 29.0% for the ILSVRC 2012 dataset with GoogLeNet and from 8.22% to 6.93% in the CIFAR-10 dataset. We also show that our SamplePairing technique largely improved accuracy when the number of samples in the training set was very small. Therefore, our technique is more valuable for tasks with a limited amount of training data, such as medical imaging tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

vegetation change detection using multi-temporal remotly sensed data during recent three decades by artificial intelligence technique (Case study: protected area of Bashgol)

Quantitative and qualitative information of vegetation and its changes in duration of time as a basic foundation of determination of  habitat quality, priority of protected area and also determination of price of ecosystem services in order to optimum management of natural resources and sustainable development is a very important technical point. In other hand, researchers are interested in rem...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.02929  شماره 

صفحات  -

تاریخ انتشار 2018